.
“Potentially high consequence breaches of biocontainment occur nearly daily: In 2010, 244 unintended releases of bioweapon candidate “select agents” were reported.”
3/31/2014, “Threatened pandemics and laboratory escapes: Self-fulfilling prophecies,” The Bulletin of the Atomic Scientists, Martin Furmanski
“If a pathogen appears in nature after not circulating for years or decades, it may be assumed to have escaped from a laboratory where it had been stored inert for many years, accumulating no genetic changes; that is, its natural evolution had been frozen….
SARS outbreaks after the SARS epidemic. The 2003 Severe Acute Respiratory Syndrome outbreak spread to 29 countries, causing more than 8,000 infections and at least 774 deaths. Because 21 percent of cases involved hospital workers, it had the potential to shut down health care services wherever it struck. It is particularly dangerous to handle in the laboratory because there is no vaccine, and it can be transmitted via aerosols….
SARS has not re-emerged naturally, but there have been six escapes from virology labs: one each in Singapore and Taiwan, and four separate escapes at the same laboratory in Beijing.
The first was in Singapore in August 2003, in a virology graduate student at the National University of Singapore. He had not worked directly with SARS, but it was present in the laboratory where he worked. He recovered and produced no secondary cases. The World Health Organization formed an expert committee to revise SARS biosafety guidelines.
The second escape was in Taiwan in December 2003, when a SARS research scientist fell ill on a return flight after attending a medical meeting in Singapore. His 74 contacts in Singapore were quarantined, but again, fortunately, none developed SARS. Investigation revealed the scientist had handled leaking biohazard waste without gloves, a mask, or a gown. Ironically, the WHO expert committee called for augmented biosafety in SARS laboratories the day after this case was reported.
In April 2004, China reported a case of SARS in a nurse who had cared for a researcher at the Chinese National Institute of Virology (NIV). While ill, the researcher had traveled twice by train from Beijing to Anhui province, where she was nursed by her mother, a physician, who fell ill and died. The nurse in turn infected five third-generation cases, causing no deaths.
Subsequent investigation uncovered three unrelated laboratory infections in different researchers at the NIV. At least of two primary patients had never worked with live SARS virus. Many shortcomings in biosecurity were found at the NIV, and the specific cause of the outbreak was traced to an inadequately inactivated preparation of SARS virus that was used in general (that is, not biosecure) laboratory areas, including one where the primary cases worked. It had not been tested to confirm its safety after inactivation, as it should have been.
Foot and mouth disease in the UK in 2007. Foot and Mouth Disease (FMD) infects cloven-hoofed animals such as pigs, sheep, and cattle. It has been eradicated in North America and most of Europe. It is highly transmissible, capable of spreading through direct contact on the boots of farm workers and by natural aerosol that can spread up to 250 kilometers. Outbreaks in FMD-free areas cause economic disaster because meat exports cease and animals are massively culled. A 2001 UK outbreak resulted in 10 million animals killed and $16 billion in economic losses.
In 2007, FMD appeared again in Britain, four kilometers from a biosafety level 4 laboratory—a designation indicating the highest level of lab security—located at Pirbright. The strain had caused a 1967 outbreak in the United Kingdom but was not then circulating in animals anywhere. It was, however, used in vaccine manufacture at the Pirbright facility. Investigations concluded that construction vehicles had carried mud contaminated with FMD from a defective wastewater line at Pirbright to the first farm. That outbreak identified 278 infected animals and required 1,578 animals to be culled. It disrupted UK agricultural production and exports and cost an estimated 200 million pounds….
Dangerous themes. These narratives of escaped pathogens have common themes. There are unrecognized technical flaws in standard biocontainment, as demonstrated in the UK smallpox and FMD cases. Inadequately inactivated preparations of dangerous pathogens are handled in laboratory areas with reduced biosecurity levels, as demonstrated in the SARS and VEE escapes. The first infection, or index case, happens in a person not working directly with the pathogen that infects him or her, as in the smallpox and SARS escapes. Poor training of personnel and slack oversight of laboratory procedures negate policy efforts by national and international bodies to achieve biosecurity, as shown in the SARS and smallpox escapes….
Potentially high consequence breaches of biocontainment occur nearly daily: In 2010, 244 unintended releases of bioweapon candidate “select agents” were reported.
Looking at the problem pragmatically, the question is not if such escapes will result in a major civilian outbreak, but rather what the pathogen will be and how such an escape may be contained, if indeed it can be contained at all.
Experiments that augment virulence and transmissibility of dangerous pathogens have been funded and performed, notably with the H5N1 avian influenza virus. The advisability of performing such experiments at all—particularly in laboratories placed at universities in heavily populated urban areas, where potentially exposed laboratory personnel are in daily contact with a multitude of susceptible and unaware citizens—is clearly in question.
If such manipulations should be allowed at all, it would seem prudent to conduct them in isolated laboratories where personnel are sequestered from the general public and must undergo a period of exit quarantine before re-entering civilian life. The historical record tells us it is not a matter of if but when ignoring such measures will cost health and even lives. Perhaps many lives.”
“Editor’s note: This essay summarizes a more detailed review of the historical record with appropriate scientific references; it is available on the website of the Center for Arms Control and Non-Proliferation. The author thanks Lynn Klotz and Ed Sylvester for help with condensing the longer report for this article.”
................
No comments:
Post a Comment