Friday, March 29, 2013

Carbon dioxide and 'not-rising temperatures' may mean climate is responding in ways 'not properly understood before,' The Economist

.
The Economist article notes the pause in global warming. Of interest but not mentioned is US CO2 has dropped for many years and is heading lower. US leads the world in reduction of CO2. US CO2 could go to zero and it would have little to no effect on the planet because China's high emissions are heading higher.

3/30/13, "A Sensitive Matter," Economist.com

"Over the past 15 years air temperatures at the Earth’s surface have been flat while greenhouse-gas emissions have continued to soar. The world added roughly 100 billion tonnes of carbon to the atmosphere between 2000 and 2010. That is about a quarter of all the CO₂ put there by humanity since 1750. And yet, as James Hansen, the head of NASA’s Goddard Institute for Space Studies, observes, “the five-year mean global temperature has been flat for a decade.”

Temperatures fluctuate over short periods, but this lack of new warming is a surprise. Ed Hawkins, of the University of Reading, in Britain, points out that surface temperatures since 2005 are already at the low end of the range of projections derived from 20 climate models (see chart 1). If they remain flat, they will fall outside the models’ range within a few years.

The mismatch between rising greenhouse-gas emissions and not-rising temperatures is among the biggest puzzles in climate science just now. It does not mean global warming is a delusion. Flat though they are, temperatures in the first decade of the 21st century remain almost 1°C above their level in the first decade of the 20th. But the puzzle does need explaining.

The mismatch might mean that—for some unexplained reason—there has been a temporary lag between more carbon dioxide and higher temperatures in 2000-10. Or it might be that the 1990s, when temperatures were rising fast, was the anomalous period. Or, as an increasing body of research is suggesting, it may be that the climate is responding to higher concentrations of carbon dioxide in ways that had not been properly understood before. This possibility, if true, could have profound significance both for climate science and for environmental and social policy.

The term scientists use to describe the way the climate reacts to changes in carbon-dioxide levels is “climate sensitivity”. This is usually defined as how much hotter the Earth will get for each doubling of CO₂ concentrations. So-called equilibrium sensitivity, the commonest measure, refers to the temperature rise after allowing all feedback mechanisms to work (but without accounting for changes in vegetation and ice sheets).

Carbon dioxide itself absorbs infra-red at a consistent rate. For each doubling of CO₂ levels you get roughly 1°C of warming. A rise in concentrations from preindustrial levels of 280 parts per million (ppm) to 560ppm would thus warm the Earth by 1°C. If that were all there was to worry about, there would, as it were, be nothing to worry about. A 1°C rise could be shrugged off. But things are not that simple, for two reasons. One is that rising CO₂ levels directly influence phenomena such as the amount of water vapour (also a greenhouse gas) and clouds that amplify or diminish the temperature rise. This affects equilibrium sensitivity directly, meaning doubling carbon concentrations would produce more than a 1°C rise in temperature. The second is that other things, such as adding soot and other aerosols to the atmosphere, add to or subtract from the effect of CO₂. All serious climate scientists agree on these two lines of reasoning. But they disagree on the size of the change that is predicted. ...

This also means the case for saying the climate is less sensitive to CO₂ emissions than previously believed cannot rest on models alone. There must be other explanations—and, as it happens, there are: individual climatic influences and feedback loops that amplify (and sometimes moderate) climate change. 

Begin with aerosols, such as those from sulphates. These stop the atmosphere from warming by reflecting sunlight. Some heat it, too. But on balance aerosols offset the warming impact of carbon dioxide and other greenhouse gases. Most climate models reckon that aerosols cool the atmosphere by about 0.3-0.5°C. If that underestimated aerosols’ effects, perhaps it might explain the lack of recent warming.

Yet it does not. In fact, it may actually be an overestimate. Over the past few years, measurements of aerosols have improved enormously. Detailed data from satellites and balloons suggest their cooling effect is lower (and their warming greater, where that occurs). The leaked assessment from the IPCC (which is still subject to review and revision) suggested that aerosols’ estimated radiative “forcing”—their warming or cooling effect—had changed from minus 1.2 watts per square metre of the Earth’s surface in the 2007 assessment to minus 0.7W/m ² now: ie, less cooling.

One of the commonest and most important aerosols is soot (also known as black carbon). This warms the atmosphere because it absorbs sunlight, as black things do. The most detailed study of soot was published in January and also found more net warming than had previously been thought. It reckoned black carbon had a direct warming effect of around 1.1W/m ². Though indirect effects offset some of this, the effect is still greater than an earlier estimate by the United Nations Environment Programme of 0.3-0.6W/m ².

All this makes the recent period of flat temperatures even more puzzling. If aerosols are not cooling the Earth as much as was thought, then global warming ought to be gathering pace. But it is not. Something must be reining it back. One candidate is lower climate sensitivity.

A related possibility is that general-circulation climate models may be overestimating the impact of clouds (which are themselves influenced by aerosols). In all such models, clouds amplify global warming, sometimes by a lot. But as the leaked IPCC assessment says, “the cloud feedback remains the most uncertain radiative feedback in climate models.” It is even possible that some clouds may dampen, not amplify global warming—which may also help explain the hiatus in rising temperatures. If clouds have less of an effect, climate sensitivity would be lower....

Lastly, there is some evidence that the natural (ie, non-man-made) variability of temperatures may be somewhat greater than the IPCC has thought. A recent paper by Ka-Kit Tung and Jiansong Zhou in the Proceedings of the National Academy of Sciences links temperature changes from 1750 to natural changes (such as sea temperatures in the Atlantic Ocean) and suggests that “the anthropogenic global-warming trends might have been overestimated by a factor of two in the second half of the 20th century.” It is possible, therefore, that both the rise in temperatures in the 1990s and the flattening in the 2000s have been caused in part by natural variability.

So what does all this amount to? The scientists are cautious about interpreting their findings. As Dr Knutti puts it, “the bottom line is that there are several lines of evidence, where the observed trends are pushing down, whereas the models are pushing up, so my personal view is that the overall assessment hasn’t changed much.”

But given the hiatus in warming and all the new evidence, a small reduction in estimates of climate sensitivity would seem to be justified."...via Junk Science

=======================================

3/29/13, "Climate Change Endgame In Sight?" Steven Hayward, Powerline blog

"A Washington-based Economist correspondent admitted to me privately several years ago that the senior editors in London had mandated consistent and regular alarmist climate coverage in its pages."...

.



No comments:

Post a Comment